Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bohari M. Yamin* and M. Sukeri M. Yusof

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.091$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N^{\prime}-Benzoyl- N-p-bromophenylthiourea

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{OS}$, the bromophenyl and benzoyl groups lie cis and trans, respectively, to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds. Owing to the presence of the Br atom in the para position, the dihedral angle between the bromophenyl group and the central carbonylthiourea plane is increased to $20.40(11)^{\circ}$, in comparison with $7.52(9)^{\circ}$ in its unsubstituted phenyl analogue. The molecules are linked by intermolecular contacts $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ to form linear chains parallel to the a axis.

Comment

Benzoylthiourea derivatives adopt a cis-trans conformation with respect to the position of the substituent and benzoyl groups relative to the S atom across the $\mathrm{C}-\mathrm{N}$ bonds (Shanmuga Sundara Raj et al., 1999; Usman et al., 2002; Kaminsky et al., 2002). The structure and bond dimensions of the title compound, (I), are in agreement with those found in arylbenzoylthioureas, including N-phenyl- N^{\prime}-benzoylthiourea, (II) (Yamin \& Yusof, 2003). However, the presence of Br1 at the para position causes the dihedral angle between the bromophenyl plane ($\mathrm{C} 9-\mathrm{C} 14 / \mathrm{Br} 1$) and the central thiourea fragment ($\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{O} 1$) to increase from $7.52(9)^{\circ}$ in (II) to $20.40(11)^{\circ}$ (Table 1). The phenyl (C1-C6) plane and the bromophenyl plane make an angle of $38.61(11)^{\circ}$, compared to 33.3 (1) ${ }^{\circ}$ in (II) (Yamin \& Yusof, 2003). The dihedral angle between the phenyl and the central thiourea fragment is $29.93(11)^{\circ}$. As in (II), there are two intramolecular hydrogen bonds, $\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{~S} 1$ and $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$, maintaining the presence of a pseudo-six-membered ring ($\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1-\mathrm{C} 7$) (Table 2). However, the molecules are packed through weak $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 1^{\mathrm{i}}$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{ii}}$ [symmetry codes: (i) $1-x,-y, 2-z$; (ii) $-x,-y, 2-z]$ intermolecular contacts to form a linear chain parallel to the a axis (Fig. 2).

Experimental

A solution of para-bromoaniline $(0.50 \mathrm{~g}, 2.9 \mathrm{mmol})$ in acetone $(50 \mathrm{ml})$ was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoyl thiocyanate in a twoneck round-bottomed flask. The solution was refluxed for about 1 h and then cooled in ice. The white precipitate which formed was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 79\%). Recrystallization from DMSO yielded single

Received 21 January 2003 Accepted 11 February 2003 Online 21 February 2003
crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{OS}$
$D_{x}=1.637 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=335.22$
Monoclinic, $P 2_{2} / c$
$a=13.846$ (3) A
$b=5.9486(14) \AA \AA$
$c=16.972$ (4) \AA
$\beta=103.311$ (4) ${ }^{\circ}$
$V=1360.3$ (6) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 2075 reflections
$\theta=1.5-27.5^{\circ}$
$\mu=3.16 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.33 \times 0.30 \times 0.22 \mathrm{~mm}$
Data collection
Bruker SMART APEX CCD areadetector
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.421, T_{\text {max }}=0.542$
7554 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.091$
$S=0.91$
3081 reflections
172 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 12$	$1.900(2)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.220(3)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.661(3)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.372(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.325(3)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.394(3)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.418(3)$		
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$132.1(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$114.3(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{Br} 1$	$119.47(19)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$127.57(19)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$122.1(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$118.15(18)$

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.87	$2.606(3)$	143
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{~S} 1$	0.93	2.64	$3.246(3)$	123
N1-H1B S^{i}	0.86	2.72	$3.534(2)$	158
${\text { C11-H11A } \cdots \mathrm{O}^{\text {ii }}}^{\mathrm{C}}$	0.93	2.51	$3.421(3)$	165

Symmetry codes: (i) $1-x,-y, 2-z$; (ii) $-x,-y, 2-z$.
After their location in a difference map, all H atoms were included in the refinement in geometrically determined positions and made to ride on the parent C or N atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=$ 0.89 Å.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve

Figure 1
The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.

Figure 2
Packing diagram of (I), viewed down the b axis. Dashed lines indicate $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants IRPA No. 09-02-02-0163.

References

Kaminsky, W., Golberg, K. I. \& West, D. X. (2002). J. Mol. Struct. 605, 9-15. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Usman, A., Razak, I. A., Satar, S., Kadir, M. A., Yamin, B. M \& Fun, H.-K. (2002). Acta Cryst. E58, o656-o658.

Yamin, B. M. \& Yusof, M. S. (2003). Acta Cryst. E59, o151-o152.

